
IAT 455 Final Project: Texture Synthesis
Team 6 members:
Jianghui (David) Dai
Teng Pin (Eric) Pan

- Overview:
The goal of this project is to create an application (Figure 1.) that allows the users to select
images from a predefined set of texture images, and produces three synthesized images
through three different patch-based methods. The three methods build on top of one another
and produce better-synthesized images one after another. The three methods in order of
built-ups are Random placement of blocks, Neighboring blocks constrained by overlap, and
Minimum error boundary cut.

Figure 1. Screenshot of the texture synthesis application.

- Research:
There were few issues that were encountered during the research and code implementation
of the selected topic.

1. Issue: Inside Efros and Freeman’s paper, it briefly explains patch-based texture
synthesis approach to generate the final synthesized images. It achieves the results
by comparing the selected parts (patches) of the original image directly with one
another. In the neighboring Block method, the patches of image are used if they are
similar enough to one another. However, this method leaves visible edges (Figure 2)
in between patches (blocks) which is fixed with the implementation of the third
method (Minimum Error Boundary Cut).

2. Solution: Since direct simple patch to patch comparison cannot be done in Java, we
first generate an initial patch by randomly selecting a point in the original images and
create the rest of the patch by mapping the neighboring pixel until the specified block
size is generated. Then we compare all the pixels in the boundary (area of blocks
overlapping) of the generated patch to the corresponding pixels in the boundary of
another patch and compare their similarities. If the result shows a difference within
the tolerance value, then the compared patch is placed beside the previous patch.

Figure 2. Screenshot of Efros and Freeman’s patch-based texture synthesis approach.

3. Issue: In the neighboring blocks method, we originally precut the texture image into
patches, and then loop through these precut patches to find the best fitting one that
matches with our target texture patch. This approach leads to a high chance of using
the same precut patch over and over again causing the final result with unnatural
repetitions.
Solution: Instead of pre-cutting the original texture image into patches, we randomly
select points from the original image and then use them to generate patches and
compare until the least different patch is found.

- Work description:
Week 10
Both of us started to research the topic and tried to implement the first random placement
method. At the end of the week, David successfully implemented the random placement
method, and he also made a basic AWT UI to show the result.

Week 11
At this stage, Eric rewrote the previous interface and used the Swing library to build a basic
user interface allowing the user to select input images from a given set. At the end week, we
started to implement the neighboring block method and tried to understand what the
algorithm is about.

Week 12
In the final week, we continued to improve the neighboring block method together. At the end
of the week, David successfully produced a better neighboring block method and got some
desired results. Then, we modified the neighboring block method together and changed how
a random block is produced from the source image to remove some of the relatedness of the
synthesis images. In the end, Eric tried to write the minimum error boundary cut method but
failed to understand how to map the minimum error from each overlap row back to the
overlap area for each pixel.

- Final result:
We completed the random placement method and the neighboring block method for the
topic of image synthesis,but we failed to implement the minimum error boundary cut method.

The random placement method:
We achieved this method by writing a random block helper method first. The random block
method produces a random block based on the source image, and the user defines its size
before calling the function. It iterates through the synthesis image’s width and height to place
each random block to the output image.

The neighboring block placement method:
- We achieved this method by writing three helper methods: the

findMinimumRightBlock method, findMinimumBottomBlock method, and
findBlockMethod. Then, in the neighboring block placement method, we used the
random block method to generate the first top left block for the output image.

- For blocks in the first column of the output image, we use the
findMinmumBottomBlock method to find a random block from the source image with
the most similar color to the top block and place it under the top block.

- For blocks in the first row of the output image, we used the findMinmumRightBlock
method to find a random block from the source image with the most similar color to
the left block and place it besides the left block.

- For other columns and rows, we used the findBlock method to find a random block
from the source image, which has the most similar color to the top block and the
most similar color to the left block and place it besides the left block (under the top
block).

The minimum error boundary cut method:
This was the most difficult method to implement and is the only one we failed to implement.
What sets this method apart from the previous methods is that it calculates the minimal cost
path through the error surface (overlap boundaries of patches) to address the issue of
unnatural (not matching) edges between each patch. Figure 3 showcases our understanding
of the approach. The blue and red squares each represent pixels from the corresponding
neighboring patch boundaries, and through the equation

𝐸
𝑖, 𝑗

 = 𝑒
𝑖, 𝑗

 + 𝑚𝑖𝑛 (𝐸
𝑖−1, 𝑗−1

 , 𝐸
𝑖−1, 𝑗

 , 𝐸
𝑖−1, 𝑗+1

)

we are then able to compute the minimum error E for all paths. Error E is then used to map
out the boundaries of each patch such that the “seam” (illustrated by purple squares with
black dots in Figure 3) of the patches are as much as possible similar to both patches.
However, the problem comes when trying to implement this equation into the code as we
couldn’t map the corresponding minimum error pixels back to their corresponding patch
boundary. This causes the chain effect in which we could not generate the minimal cost path
to blend the edges of the patch together to create a more natural texture synthesis.

Figure 3. Screenshot of trying to understand how the minimum cost path through the error surface is computed.

- Distributions of tasks:
David:
I successfully implemented the randomBlockPlacement method and the
neighboringBlockPlacement with Eric's help, and I also made some adjustments to Eric's
interface.

Eric:
I primary worked on implementing the user interfaces, aid David in improving the second
method (the neighboring block placement), and attempted to implement the third method
(Minimum Error Boundary Cut).

- Conclusion:
David:
I learned the basic idea of patch-based image synthesis and implemented some synthesis
methods into actual codes. I think the experience of following an academic paper and
recreating the algorithm from the paper is worth having if I want to do the research studies in
the future.

Eric:
I learned different approaches trying to perfect the results of texture synthesis through
patch-based methods. For instance, this includes how the three methods presented in Efros
and Freeman’s paper are a built-up / iteration of the previous methods to address the
problems of synthesizing texture images (i.e. reducing blockiness of the boundary between
synthesized images in a patch-based approach).

- Reference:
Alexei A. Efros and William T. Freeman. 2001. Image quilting for texture synthesis and

transfer. In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. Association for Computing Machinery, New York, NY, USA,
341–346. DOI:https://doi-org.proxy.lib.sfu.ca/10.1145/383259.383296

Choudhary, D. (2020, June 21). Texture synthesis : Generating arbitrarily large textures from
image patches. Retrieved March 20, 2021, from
https://devashi-choudhary.medium.com/texture-synthesis-generating-arbitrarily-large-
textures-from-image-patches-32dd49e2d637

